65075 Impact Melt 108 grams Figure 1: Photo of 65075,1. Cube is 1 cm. S72-39406 ### Introduction Station 5 was at the transition between Stone Mountain and the Cayley Plains. 65075 was collected from the inner wall of a 20 m subdued crater relatively close to rake samples 65500 and 65900 – see sections on 65501 and 65901. It is a greenish gray breccias with a black glass coating. It is highly fractured and broke in pieces during return (figures 1 and 3). ### **Petrography** Grieve and Plant (1973) studied 65075 is some detail and this has been critically summarized by Ryder and Norman (1980). It seems clear that the crystalline interior is an impact melt rock with highland composition ($\sim 30 \% \text{ Al}_2\text{O}_3$). It has relict ophitic, subophitic and poikiolitic textures, but it has been highly shocked so that the clast matrix relationship is confused (figures 2 and 3). There is a great deal of glass. No pyroxene diagram has been published. Hunter and Taylor (1981) reported lots of rust. ### **Mineralogical Mode** None reported Figure 2: Thin section photomicrograph of 65075, 9 (from Grieve and Plant 1973). Lunar Sample Compendium C Meyer 2012 Table 1. Chemical composition of 65075 | Table 1. Chemical composition of 65075 | | | | | | | | | | |---|--|---|---------------------------|--|---|---|---|--|-----------------------| | reference
weight | glass
Morris 86
See 86 | | Rancitelli73 | | glass av. anor. av
Grieve73 | | anor
See86 | | | | SiO2 % TiO2 Al2O3 FeO MnO MgO CaO Na2O K2O P2O5 S % sum | 45.05
0.23
30
3.3
4.26
16.8
0.49
0.06 | (c)
(a)
(c)
(a)
(c)
(a)
(a)
(a) | | 44.45
0.33
24.75
6.62
0.06
8.26
14.4
0.76
0.08 | 43.98
0.23
30.92
1.94
0.04
3.08
17.25
0.83
0.12 | (d)
(d)
(d)
(d)
(d)
(d)
(d) | 43.7
0.05
30.3
3.24
0.06
4.8
16.7
0.38
0.02 | (c)
(c)
(c)
(c)
(c)
(c)
(c)
(c) | | | Sc ppm
V | 6.47 | (a) | | | | | | | | | Cr
Co
Ni
Cu
Zn
Ga
Ge ppb
As
Se
Rb
Sr
Y
Zr
Nb
Mo
Ru
Pd ppb
Ag ppb
Cd ppb
In ppb
Sn ppb
Sn ppb
Sp ppb
Cs ppm
Cs ppm | 901
72
1278 | (a)
(a)
(a) | | | | | | | | | Ba
La
Ce
Pr | 197
11.7
28.3 | (a)
(a)
(a) | | | | | | | | | Nd
Sm | 4.95 | (a) | | | | | | | | | Eu
Gd | 1.05 | (a) | | | | | | | | | Tb
Dy
Ho
Er
Tm | 1.03 | (a) | | | | | | | | | Yb
Lu | 3.45
0.49 | (a) | | | | | | | | | Hf Ta W ppb Re ppb Os ppb Ir ppb Pt ppb Au ppb | 3.56
0.36 | (a)
(a)
(a) | | | | | | | | | Th ppm
U ppm
technique: | 2.5
0.69
(a) INAA | (a)
(a)
l, <i>(b)</i> | 2.89
0.84
radiation | (b)
cou | nt., (c) bro | ad beam e | prob | oe, (d) av | verages of probe data | Figure 4: Processing photo of 65075. Cube is 1 cm. S72-44647 # **Mineralogy** *Olivine:* Fo₇₅ Plagioclase: An₉₅ Spinel: Pleonaste spinel has been reported ## **Chemistry** Rancitelli et al. (1973) provide a bulk analysis – but for only K, U, and Th. Grieve and Plant (1973) provide reliable major element analyses, but no trace element analyses. Morris et al. (1986) analyzed the glass coating for trace elements, but the glass may not be representative of the rock. So if someone wants to analyze something, please request a representative piece of the interior of this sample. ## Cosmogenic isotopes and exposure ages Rancitelli et al. (1973) determined the cosmic-ray-induced activity of 22 Na = 50 dpm/kg and 26 Al = 136 dpm/kg. # **Processing** There are 4 thin sections of 65075. More are needed from a piece from the interior. #### References for 65075 Butler P. (1972a) Lunar Sample Information Catalog Apollo 16. Lunar Receiving Laboratory. MSC 03210 Curator's Catalog. pp. 370. Grieve R.A.F. and Plant A.G. (1973) Partial melting on the lunar surface, as observed in glass coated Apollo 16 samples. *Proc.* 4th *Lunar Sci. Conf.* 667-679. Hunter R.H. and Taylor L.A. (1981) Rust and schreibersite in Apollo 16 highland rocks: Manifestations of volatile-element mobility. *Proc.* 12th Lunar Planet. Sci. Conf. 253-259. LSPET (1973b) The Apollo 16 lunar samples: Petrographic and chemical description. *Science* **179**, 23-34. LSPET (1972c) Preliminary examination of lunar samples. *In* Apollo 16 Preliminary Science Report. NASA SP-315, 7-1—7-58. Morris R.V., See T.H. and Horz F. (1986) Composition of the Cayley Formation at Apollo 16 as inferred from impact melt splashes. *Proc.* 17th Lunar Planet. Sci. Conf. in J. Geophys. Res. **90**, E21-E42. Rancitelli L.A., Perkins R.W., Felix W.D. and Wogman N.A. (1973a) Preliminary analysis of cosmogenic and primordial radionuclides in Apollo 17 samples (abs). *Lunar Sci.* IV, 612-614. Lunar Planetary Institute, Houston. Rancitelli L.A., Perkins R.W., Felix W.D. and Wogman N.A. (1973b) Primordial radiouclides in soils and rocks from the Apollo 16 site(abs). *Lunar Sci.* **IV**, 615-617. Lunar Planetary Institute, Houston. Ryder G. and Norman M.D. (1980) Catalog of Apollo 16 rocks (3 vol.). Curator's Office pub. #52, JSC #16904 See T.H., Horz F. and Morris R.V. (1986) Apollo 16 impact-melt splashes: Petrography and major-element composition. *Proc.* 17th *Lunar Planet. Sci. Conf.* in J. Geophys. Res. **91**, E3-E20. Sutton R.L. (1981) Documentation of Apollo 16 samples. In Geology of the Apollo 16 area, central lunar highlands. (Ulrich et al.) U.S.G.S. Prof. Paper 1048. Warner J.L., Simonds C.H. and Phinney W.C. (1973b) Apollo 16 rocks: Classification and petrogenetic model. *Proc.* 4th *Lunar Sci. Conf.* 481-504.